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1 Introduction 
Computer vision researchers work with many dif- 

ferent forms of data. Model-based vision systems 
work with geometric models of 3D objects, intensity 
or range images, and many different kinds of features 
that are extracted from these images. The recogni- 
tion/pose estimation process involves a number of dif- 
ferent steps and different operations all of which take 
in and generate various forms of data. Figure 1 il- 
lustrates the operations and data  types required for a 
sample recognition process (Shapiro, Neal, and Pon- 
der; 1992). The process starts with a gray-scale image 
and produces an edge image, a line segment structure, 
and a triple chain structure (described in Section 2). 
Each object in the model database is represented by 
a set of its major views, and each major view is rep- 
resented by a triple chain structure. The triple chain 
structure that  was extracted from the image and the 
set of triple chain structures representing the major 
views (view classes) are input to the matching algo- 
rithm which tries to identify the view class or classes 
that most closely match the view in the image. This 
process illustrates the kind of experiments that mod- 
elare simpler than the one shown, and some are much 
more complex. 

A researcher running a set of experiments with the 
process of Figure 1 would want to try the procedure 
on a set of test images. A thorough test could involve 
hundreds of gray-scale images. Each of these would 
produce an edge image, a line segment structure, and 
a triple chain structure. The researcher might also 
want to  try different operators or different versions of 
his/her own algorithms. For example, there might be 
a set of experiments that used the Canny edge detector 
and another set that used the Sobel edge detector. An- 
other set of experiments might compare the Burns line 
finder to the FEX line finding package. Yet another 
set might compare several versions of the matching al- 
gorithm. Parameter changes to  all of the procedures 
would account for even more variability. 

The computer vision research community has been 
criticized for lack of rigor in scientific experimentation. 

It can be argued that this is, at least partly, due to the 
lack of facilities for management of experiments and 
image-related data. To this end we have designed and 
are in the process of implementing a visual scientific 
database system, especially intended to handle data 
and experiments for model-based computer vision re- 
search. The purpose of this paper is to describe this 
system to the CAD-model-based vision community. 

2 Data Organization 
Almost every computer vision system uses a dif- 

ferent format for its data. There are several major 
image formats and countless data structures used for 
mid- and high-level vision. An important question 
in our work is how to structure this data to sim- 
plify the work of the researcher and promote a degree 
of interoperability of software from different groups. 
The relational model has been very popular in busi- 
ness database systems, but has fallen short in meeting 
the needs of scientific researchers. The newer object- 
oriented systems are much more flexible, but what 
they provide is so general that structuring data is still 
a programming art. We have designed a system that 
lies somewhere between the two, an entity-oriented, 
hierarchical, relational database system. The build- 
ing block of the system is the relational data structure 
(RDS) of Shapiro and Haralick (1980) which we origi- 
nally designed for use in a spatial information system 
and which is used heavily in our relational matching 
algorithms. 

The relational data structure or RDS is a hierar- 
chical, relational structure that provides a data model 
for scientific research; it was designed in particular, for 
research in model-based vision. Each entity in the sys- 
tem (images, regions, line segments, sets of extracted 
entities, graph structures, and so on) is represented 
by an RDS. The RDS structure has five main compo- 
nents: the name,  the type, the property table, the parts,  
and the relations. The name is the unique identifier 
of the entity represented by the RDS. Each entity is 
of a type that has been predefined to the system via 
a schema definition process. The property table is a 
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O a  

Figure 1: The experiment structure for an experi- 
mental process. The datatypes and operations all 
have identifiers that the user can refer to when plan- 
ning his/her experiments. In the experiment the first 
schema, Gray-ScaleJmage, is to be replaced by four 
different instances: CubeScut, Cumbetri, Cubehole, 
and Cubecyl. The first operation, edge finder, is to be 
replaced by three different operators: the Sobel edge 
detector, the Prewitt edge detector, and the Canny 
edge detector. The other operations and inputs are 
not yet specified. 

list of attribute-value pairs describing the global at- 
tributes of the entity. For example, an image RDS 
might have attributes for the number of rows, num- 
ber of columns, bits per pixels, number of bands, and 
other information that is often found in image head- 
ers. 

Many complex entities can be broken down into 
parts. For instance, the parts of our line segment 
structure are the individual line segments. Similarly 
the parts of our triple chain structure are triple chains. 
In our sticks, plates, and blobs models (Shapiro e i  all 
1984), the parts of an object model were sticks (long 
thin, parts), plates (flat parts), and blobs (everything 
else). The parts component of the RDS allows the 
user to  easily represent this kind of decomposition. 

Relationships among parts are important in many 
model-based vision algorithms. The attributed re la  
tions of the RDS structure allow these relationships 
to be flexibly represented. Any number of relations 
can be defined for an RDS schema. Each relation 
has a name and two associated integers: the arity of 
the relation and the number of attributes attached to 
each tuple. For example, when the relation is connec- 
tion between two line segments augmented by the an- 
gle between connected segments, the arity is two (for 
the two connected segments) and the number of at- 
tached attributes is one (for the angle between them). 
The triple chain structure is a more interesting rela- 
tional structure. It has three binary relations over 
triple chains: strong adjacency, weak adjacency, and 
opposite. Strongly adjacent triple chains share a line 
segment, weakly adjacent chains meet a t  a point, and 
opposite triple chains can be connected by a line in one 
of the major directions of the figure that cuts through 
its body. Figure 2 illustrates some of the structures 
from Figure 1 in the RDS data model. 

The structures of Figure 2 are for our own use; 
other users of our system may choose to use them or 
may define their own schemas to fit their own work. 
The rules for designing sehemas are simple. The prop- 
erty list acts as a general attribute-value or slot-filler 
storage device. Users who do not wish to explicitly 
identify parts and relations will store all information 
about an entity in its property table. The simpler en- 
tities, in fact, consist only of a property table. The 
Line-Segment RDS of Figure 2 is an example of such 
an entity. 

Whenever the user wishes to associate a named list 
of RDSs with the RDS schema he/she is designing, the 
parts section of the RDS is the most appropriate devise 
to use. Many of our sample structures have parts; the 
parts of the LineSegmentStructure are LineSegment 
RDSs, the parts of the Triple-ChainStructure are 
Triple-Chain RDSs, the parts of a TripIe-Chain 
are Triple RDSs, and the parts of a Triple are 
LineSegment RDSs and Triple-Chain RDSs. In the 
last case, there are two separate kinds of parts iden- 
tified by two separate identifiers, Tlines and Tchains. 
Note that the semantics of “parts” is left to the user; 
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parts may be subparts, superparts, or just associated 
entities. 

Once the user has defined one or more sets of parts 
in a schema, he/she may define attributed relations 
over those parts. The LineSegmentStructure, for ex- 
ample, has relations named Proximity, Parallel, and 
Collinear. Each of these is an attributed binary re- 
lation; each tuple contains two parts in the indicated 
relationship plus an attribute of this relationship. For 
instance, the Proximity relation has a Distance at- 
tribute indicating the distance between the two proxi- 
mate line segments, sego and segl. Since the user has 
indicated that this relation is symmetric, the order of 
the parts conveys no meaning. If (Linea, Lineb, dis) 
is a tuple in the Proximity relation, then so is (Lineb, 
Linea, dis), whether it is explicitly stored or not. 

3 User Interface 
All aspects of interaction between the user and the 

database system involve graphical information. The 
system consists of several subsystems or graphical 

different aspects of the database. The main window of 
the system can be thought of as a toolbox which pro- 
vides the user access to these tools via a menu. The 
list of tools includes: Schema Constructor, Schema 
Browser, Database Manager, Instance Browser/Query 
Environment, and Lab Notebook. Each graphical tool 
will produce its own window with its own particular 
visual interface. 

tools) with which the user can access an 6 manipulate 

3.1 RDS Schema Creation/Modification 
The system will contain a set of built-in RDSs, 

but the user is not restricted to using these alone. 
Through the RDS Schema Constructor, the user can 
create and modify new schemas for his/her own new 
RDS types. The RDS creation process allows the user 
to add, modify, and delete properties, parts, and re la  
tionships within the new RDS. New RDSs can inherit 
properties, parts, and relationships from other RDSs. 
The constructor has three separate selection windows 
for the properties, parts and relations. However, a t  
any time during the creation or modification of an 
RDS, the user can bring up a view window for viewing 
the definition of the schema in a more coherent man- 
ner. Once the user is finished defining a new RDS, 
hefshe can add it into the database where it can be 
shared by all users. In order to avoid having the user 
type in large amounts of information, the interface is 
highly graphical. The names of new (i.e. not inher- 
ited) properties, parts, and relationships are typed in 
by the user, but most everything else can be specified 
through a selection process. Figure 3 illustrated the 
process of defining the Linesegment-Structure RDS. 

3.2 RDS Instance Creation/Modification 
In most cases, the creation of RDS instances will 

be done automatically as a side effect of running an 
experiment. RDS instances can also, however, be cre- 
ated by entering values for the properties, parts, and 

relationships into an empty template of the RDS. As 
before, the amount of typing the user must do is kept 
to a minimum. Textual information, such as names, 
comments and atomic values must be typed directly 
into the template. Entering instances of other RDSs 
will be done through a special selection interface be- 
tween the Query Environment and the Database Man- 
ager. 

3.3 Instance Browsing 
Visualization of data is extremely important to  

users of any scientific database system, especially a 
system for computer vision research. We will pro- 
vide a rich set of graphical primitives and a method 
for combining them so that users may specify visual- 
izations for entities whose schema they design. Our 
initial system will provide graphical primitives for dis- 
playing graytone and labeled images, regions, line seg- 
ments, and points. Users defining a new schema will 
specify the graphical representation for each part of 
the schema that is to be displayed. An RDS will be 
displayed by displaying its properties, its parts, and 
its relations. This subsystem is currently being de- 
signed. When it is finished, users will be able to select 
a schema and browse through collections of instances 
of that schema that are returned by the query proces 
sor . 

3.4 Schema Browsing 
We expect our system to be used in shared labora- 

tory environments. Users will design their own struc- 
tures, but will often share those structures with oth- 
ers. Furthermore, users will sometimes wish to access 
particular structures, but will often want to browse 
through their own structures, structures designed by 
other users, and structures provided by the system. 
Schema browsing means looking through a number of 
different schema. In our system, this means selecting 
the schema from a menu of choices and viewing that 
schema in a window provided by the schema browser. 
There are two different ways of viewing a schema. One 
is to view the textual structure that the designer of the 
schema produced when creating the schema. However, 
a user who is unfamiliar with a particular schema or 
its fields, may want to see an example. We will pro- 
vide the facility for the user to ask for an example for 
any schema he/she is viewing. Each schema will have 
an attached sample RDS instance for this purpose, 
so viewing an example will merely cause the schema 
browser to call on the instance browser to produce the 
appropriate graphics. We will provide sample struc- 
tures for all the built-in RDS schemas in our system 
and will encourage our users to do the same for their 
own structures. 

3.5 Query Interface 
In our system, we do not differentiate between 

querying and browsing. Unrestricted browsing 
through a set of entities is just a method of exam- 
ining each entity in the set. As the user starts spec- 
ifying constraints, the subset of entities that he/she 
actually examines becomes more restricted and thus 
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Figure 3: In this example, the schema for the 
LineSegmentStructure is being defined. The property Number-ofsegments has been defined to be of type 
integer; the parts list named Segments has been defined to be a list of LineSegments: and the relations Collinear- 
i t y  and Proximity over pairs of Linesegments have been defined. The user is in the process (riglit side of figure) 
of defining the attributed binary relation Parallel, also over pairs of LineSegments and has just typed in the 
attribute name Degree to be a real attribute of that relation. 

The graphical interface for RDS schema construction. 
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smaller. The user interface for querying or browsing 
displays a textual version of the schema for the RDS 
instances to  be returned. The user will interact with 
the graphical interface to enter constraints concerning 
the various sections of the RDS. This will be discussed 
in the next section. 

4 RDS Queries 
The standard selection query in a relational or 

object-oriented database system asks the system to 
retrieve a set of entities of a given type that satisfy 
certain constraints. There are two major categories 
of constraints that users might wish to impose. The 
first involves constraints on the data. For example, a 
user may wish to retrieve all Linesegments of length 
greater than 50 pixels from a LineSegmentStructure 
associated with a specific instance of a LabeledJmage. 
All of the constraints in this query involve specific 
fields of specific RDS schemas. The second involves 
constraints on the experiments that the data came 
from or is to  be used in. For instance, a Ph.D. stu- 
dent may wish to obtain a set of images that another 
(usually former) student used in his/her research. Or 
a researcher may want to retrieve some data  that she 
herself used about three years ago. We expect our 
users to retrieve data in both ways and sometimes in 
a combination of both ways. In this section, we will 
consider only data-driven queries; experiment-driven 
queries will be discussed under experiment manage- 
ment. 

A query is the specification of 1) an RDS schema 
and 2) a set of constraints involving that schema. 
The result of a query is a set of RDS instances of 
that schema that each .satisfy the stated constraints. 
Since our RDSs have three sections (properties, parts, 
and relations), a query concerning a particular RDS 
schema must be able to specify constraints concerning 
its properties parts and relations. We will define each 
of these in turn. 

4.1 Property Table Constraints 
A local constraint is a Boolean expression defined 

over (the value of) a single attribute. For example, 
if Nrows is an attribute in the property table of an 
image, then (Nrows 5 512) is a local constraint. A 
global constraint is a Boolean expression defined over 
the (values of) more than one attribute. For exam- 
ple, if Nrows and Ncols are two separate attributes 
in the property table of an image, then (Nrows 2 
512 or Ncols 2 512) is a global constraint. An RDS 
instance satisfies the property table constraints of a 
query if it satisfies every local constraint and every 
global constraint specified by the user in that query. 

We will call the combined constraints on an RDS in 
a query an RDS constraint expression. The simplest 
RDS schemas consist only of a property table. The 
RDS constraint expression for these simple schemas 
is merely the and of all the local and global property 
table constraints. This is the basis for the recursive 

definition of an RDS constraint expression. 

4.2 Parts Constraints 
The user specifies the parts of a schema as a collec- 

tion of named sets of RDSs. A query concerning the 
parts is (recursively a query concerning the RDSs in 
these sets. A parts 1 ist constraint is a quantified RDS 
constraint expression. The quantifier is currently re- 
stricted to being very simple: a single universal quan- 
tifier, a single existential quantifier, or a percentage 
quantifier. A list of parts satisfies a universally quan- 
tified parts list constraint if all the RDSs in the list 
satisfy the constraint. A list of parts satisfies an exis- 
tentially quantified parts list constraint if a t  least one 
of the RDSs in the list satisfies the constraint,. A list 
of arts satisfies a nn-percentage quantifier if at least 
n n k  of the RDSs in the list satisfy the constraint. A 
local parts list constraint is a constraint on a single 
named set of parts in an RDS. A global parts list con- 
straint is associated with all parts of the RDS, not just 
a particular named set of parts. An RDS instance sat- 
isfies the parts constraints of a query if it  satisfies all 
of the local parts list constraints and all of the global 
parts list constraints of the query. 

4.3 Relational Constraints 
The kinds of queries described so far involve only 

predefined atomic values. The most interesting kind 
of retrieval in model-based vision is the retrieval of 
images or models according to their content. Query 
b y  content is a phrase that is often cited by  image^ 
database researchers, but it is not well-defined. Ev- 
ery system has its own meaning of the term. In our 
model-based vision systems, we use relational match- 
ing as the paradigm for matching an object model to a 
(relational) structure extracted from an image. Thus 
it is natural in our database system to use relational 
matching as one form of query by content. The pur- 
pose of this kind of query is to retrieve entities that 
are similar to or contain subentities that are simi- 

do not intend our relational query mechanism to take 
the place of the user’s own object matching strategies. 
Furthermore, we intend to also provide other forms of 
query by content such as direct (sub)image to image 
matching . 

lar to) specifie d relational structures. Note that we 

Relational matching is the process of comparing 
two relational structures to determine how similar 
they are. For instance, the two Triple-Chain Struc- 
tures in Figures 4a and 4b are very similar. The 
structure in Figure 4c is identical to a substructure 
of Figure 4a. We have defined a metric called the re- 
lational distance that can be used to compare two re- 
lational descriptions (Shapiro and Haralick, 1985) and 
indicated how to  extend it to attributed relational de- 
scriptions in our book (Harahck and Shapiro, 1992). 

The attributed relational distance allows the re- 
trieval of structures having relations that are similar to 
specified relations. Another useful facility in a vision 
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a) Triple-Chain b) A similar 
Structure structure 

- strong adjacency j>>. - weakadjacency 
C ++ opposite 

c )  A substructure 

Figure 4: Three Triple-ChainStructures. Structures a and b are similar to one another. Structure c is isomorphic 
to a substructure of structure a. 

database system is to allow retrieval of structures hav- 
ing relations that, contain subrelations that are similar 
to specified relations. We will refer to this as a “one- 
way relational distance.” Here the query specifies a 
“small” relation and looks for entities whose (larger) 
relations contain or nearly contain the small one. This 
is what model-based vision is all about. 

Given the capability to determine the normalized, 
attributed relational distance (or one-way relational 
distance) between any pair of relations that have the 
same arity and the same number (and type) of at- 
tributes, users of our system may formulate queries 
that search for RDSs with relations that are similar 
to (or contain subrelations that are similar to) user- 
specified relations. To this end, a relational constraint 
is the specification for a particular named relation R in 
the query of a triple (S, 6, f o r m ) ,  where S is a second 
relation of the same arity and having the same number 
and types of attributes as R,  E is a matching thresh- 
old between 0 and 1, and f o r m  indicates if the full 
relational distance or one-way relational distance is to 
be used. An RDS satisfies this relational constraint 
if the (appropriate) relational distance between S and 
the corresponding relation of the RDS is not greater 
than E .  An RDS satisfies the relational constraints of a 
query if it satisfies each specified relational constraint, 
individually. 

4.4 Full RDS Constraints 
We have now defined property table constraints, 

parts constraint,s, and relational constraints that can 
be formulated for a query. Putting these together, an 
RDS constraint consists of the specification of an RDS 
schema along with its property table constraints, its 
parts constraints, and its relational constraints. An 

RDS instance satisfies an RDS constraint if it is of 
the type specified by the schema and it individually 
satisfies the property table constraints, the parts con- 
straints, and the relational constraints. 

5 Experiment Management 
Computer vision researchers, like scientific re- 

searchers in general, need to  manage sets of con- 
trolled experiments. In the past, it has been very diffi- 
cult to  record and organize experiments and the large 
amounts of data they produce and consume. Our sys- 
tem provides the concept of an interactive laboratory 
notebook, which is a collection of tools and structures 
that aid the user in managing, recording and organiz- 
ing experiments on data stored in the database. The 
laboratory notebook also records history information 
about data stored in the database. This history data 
is accessible by the user and provides extra knowledge 
useful for understanding and creating related data. 

All structures used in the laboratory notebook are 
RDSs. This is possible because of the flexibility of the 
RDS structure. Using RDSs in the laboratory note- 
book unifies our system; the same tool interfaces can 
be used to create and access both data structures and 
laboratory notebook structures. 

5.1 Overview of Experiments 
An experiment is the controlled execution of a 

process that produces and consumes data from the 
database. The user controls the execution of the pro- 
cess by specifying operations, parameters and data to 
substitute into the process. Substituting new elements 
permits the user to explore the effect of simple changes 
to the process. For example, a vision researcher might 
be interested in testing the quality of a set of edge de- 
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tection operators. An experiment is designed which 
specifies a process with an edge detection operator 
and the new set of edge detection operators to test. 
When the experiment is executed, each operator in 
the set is substituted for the edge detection operator in 
the process. This generates a modified process, which 
is executed and outputs are generated. The outputs 
are stored in the database for later analysis. The lab 
notebook controls execution of experiments and keeps 
track of results. 

5.2 Process Definition 
A process definition amenable to substitutions is an 

important component of our definition of an experi- 
ment. In our system, a process consists of functional 
operators with directed connections that specify the 
schemas of the RDSs that flow along them. Model- 
ing a process as operators and typed connections is 
derived from the object-process model of Dori et al. 
(1993). The benefit of these models is the explicit rep- 
resentation of both the RDS schemas of the instances 
that flows thorough a process and the operations that 
compose a process. 

Our process definition defines the structure of the 
process. For each operator, the number of parame- 
ters and RDS schema of each parameter are specified. 
A process defined to this level of detail is a process 
schema. The process diagram of Figure 1 is an exam- 
ple of a process schema. When a process schema is 
further defined with one or more RDS instances spec- 
ified for each input connection it is a process instance. 
Process instances are executable. 

5.3 Experiment Structure Definition 
An experiment RDS contains the name of the ex- 

periment, time of creation, an experimental process 
RDS and a process data RDS. An experimental pro- 
cess RDS contains a process instance and a set of sub- 
stitution locations. A substitution location is a label 
of an operator or connection in the process instance, 
which denotes where a substitution occurs. A pro- 
cess data RDS contains a collection of substitution 
sets and storage for outputs. The experiment, exper- 
imental process, and process data  RDSs also contain 
storage for textual descriptions and comments by the 
user about the experiment, process and the process 
data. 

5.4 Experiment Tools 
The lab notebook provides a collection of tools 

which support the management of experiments. Ex- 
periment management tools make use of the manage- 
ment, query and browser tools provided in our system. 
The suite of tools associated with the management of 
experiments includes tools for experiment modifica- 
tion, execution, analysis, organization and browsing. 
There are menu options to activate these tools at the 
top-level interface of the notebook. 

5.5 Interfacing with other packages 
While the database system will be autonomous, our 

design provides for its access from one or more image 
processing packages. Our first prototype system will 
be interfaced to KHOROS, a public domain software 
system from the University of New Mexico (Rasure, 
1991). KHOROS commands will be created that call 
on the query processor of the database system to re- 
trieve data  for KHOROS experiments and that store 
experimental results in the database. 

5.6 Organizing Experiments 
Many researchers have used an ad-hoc system of 

recording and organizing data  which consists of stor- 
ing data  in files and using long file names and direct+ 
ries as indices. Sometimes it is difficult to find stored 
data in these system because the organization scheme 
for the file names is ad-hoc and there are many files 
to search by hand. The laboratory notebook provides 
an alternative to  this scheme using the organization 
RDS structure. The organiraiaon RDS is a hierarchi- 
cal index of information used to  organize experiments. 
The hierarchical structure is used to store information 
about the environment in which experimentation takes 
place, as well as any hierarchical organization struc- 
ture imposed by users, 

5.7 Browsing for experiments - Time line 
tool 

The lab notebook provides a variety of different 
tools to browse through experiments. Using the RDS 
browser to browse organization structures lets re- 
searchers browse for experiments based on their or- 
ganization information. The time line Browser Tool 
allows a researcher to  visually browse for experiments 
according to the time of their creation. A line is dis- 
played and annotated with a collection of possible ex- 
periment creation dates. The dates represent the en- 
tire range of possible date values and only a subset are 
actually displayed, for example, one from each year. 
To access a sub-range of the dates the user points the 
mouse and clicks anywhere on the displayed time line. 
The line is re-annotated with dates with a sub-range 
of dates centered on the date selected by the user. 
Each sub-range of dates narrows the range of dates 
displayed, for example, the months in a selected year 
and then the days in a selected month. Once the total 
number of experiments names in the sub-range is a 
manageable size the experiment names are displayed 
and the user may select an experiment. 

5.8 The history mechanism 
Another problem encountered by computer vision 

researchers is a lack of knowledge about the process 
used to create some particular data set. This knowl- 
edge or history increases the user understanding of the 
data. The laboratory notebook uses a history mechai 
nism to record the operators and input data used to 
create each RDS. 

71 

Authorized licensed use limited to: Los Alamos National Laboratory. Downloaded on April 06,2010 at 17:18:48 EDT from IEEE Xplore.  Restrictions apply. 



The history mechanism works by associating a his- 
tory node with each instance in the database. A his- 
tory node stores references to the operator the in- 
stance was generated from and the history nodes for all 
input instances of that operator. The most recent h i s  
tory information is contained within the history node 
itself, the operator used to generate the instance. The 
operator’s input data history nodes contain the oper- 
ators used to generate the input instances. History 
nodes form a tree-structured chain of history informa- 
tion. 

6 Related Work 
Our work spans several different, but related areas 

of research: computer vision/image processing, scien- 
tific database systems, visual languages, and experi- 
ment management systems. Other database systems 
being developed for computer vision/image process- 
ing include the work of Brolio et al. (1989) and of 
Gupta et a1 (1991). The computer vision community 
is also in the process of defining the image understand- 
ing environment (Mundy et al., 1992) which contains 
the structure and access definitions for a wide variety 
of structures commonly used in computer vppision. It 
will be straightforward to implement these structures 
as RDSs in our database system. 

7 Summary 
We have presented the design of a visual database 

system for data and experiment management. Our 
system was designed as a general scientific database 
system, but motivated by and intended for use in 
model-based computer vision. We provide a unified 
data model, a highly graphical user interface, an ad- 
vanced query facility, and an interactive laboratory 
notebook. We hope that the system, when completed, 
will aid in scientific experimentation and will promote 
data sharing in the computer vision research commu- 
nity. 
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